Variable Rate Starter Fertilization Based on Soil Attributes

Jeffrey Vetsch and Dr. Daniel Kaiser
Univ. of Minnesota

Fluid Fertilizer Forum,
Scottsdale, AZ
February, 18, 2014

Funding provided by the Fluid Fertilizer Foundation
Justification

• On calcareous (pH>7.4) P fixing soils a fluid starter fertilizer, like ammonium poly phosphate (APP), applied in-furrow may be an efficient and economic alternative to a traditional broadcast application.
 – Especially, on short-term rented land, where the farmer is not necessarily interested in building soil test levels (if, pH>7.7 hard to build soil test).
 – Instead the primary goal is to maximize yield and profit while minimizing risk.
Justification continued

• Widespread adoption of variable rate fertilization and availability of variable rate controllers has raised new questions.
 – Does the optimum rate of starter fertilizer vary enough within a field to require variable rate application of starter?
 – What soil or landscape attributes can be used to make variable starter rate application recommendations?
The objectives of this study were to:

1) measure the effect of APP rate on early growth of corn, grain yield and fertilizer use efficiency;
2) determine if the optimum rate of APP varies within a typical Minnesota field;
3) develop and calibrate an algorithm for making variable rate starter applications based on soil attributes; and
4) compare and contrast the effects of a traditional broadcast P application on the response(s) observed in objectives 1, 2 and 3.
Experimental design

- Modified strip trial design
- Treatments randomized within replications in a split-plot arrangement
 - Main plot: Broadcast P rate (2)
 - Sub plot: APP starter rates (4)
- 16 replications per location
 - 16 reps × 8 treatments = 128 plots
- Response data from replications with similar soil attributes are pooled together

Funding provided by the Fluid Fertilizer Foundation
Methods and timeline

• Study initiated by Dr. Daniel Kaiser in 2012 (two sites) in south-central Minnesota, 3 sites in 2013.
• Soil samples analyzed for Bray P1, Olsen P, pH, CaCO$_3$ and exchangeable K
 – 0-6 inch samples: one composite (8 cores) sample from two neighboring plots or an area about 15 ft. by 35 ft.
 – 6-12 inch samples: one composite (16 cores) for each replication or an area 40 ft. by 130 ft (0.12 ac).
• Broadcast-apply P at 0 and 120 lb P$_2$O$_5$/ac as TSP
• Broadcast-apply N, K, S and Zn as needed to optimize corn production, incorporate with tillage.

Funding provided by the Fluid Fertilizer Foundation
Methods and timeline (continued)

• Plant corn and apply APP in-furrow at 0, 2.5, 5 and 7.5 gal/ac or about 0, 10, 20 and 30 lb P₂O₅/ac

• Farmer cooperator managed: weeds and pests as needed along with the rest of field

• At V5, harvest 8 whole plants for yield, P conc., P uptake; NDVI (GreenSeeker™ sensor); stand counts - calculate plant populations

• Combine harvest center two rows 45 ft long in two 22.5 ft segments; at harvest collect grain sample analyze for total P
May 2, 2013 SC and SE Minnesota
2013 “Spring” weather at Waseca

Daily precipitation, inch
0.0
0.5
1.0
1.5
2.0
Max Air Temp., deg F.
40
60
80
100

Apr-Jun 19.34”
100° 10” snow

102°

planting

Funding provided by the Fluid Fertilizer Foundation

University of Minnesota
Driven to Discover™
Summary of soil test attributes

<table>
<thead>
<tr>
<th>Loc.</th>
<th>SOM</th>
<th>Bray</th>
<th>K</th>
<th>pH Min</th>
<th>pH Avg</th>
<th>pH Max</th>
<th>Olsen-P Min</th>
<th>Olsen-P Avg</th>
<th>Olsen-P Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>G12</td>
<td>5.8</td>
<td>25</td>
<td>209</td>
<td>5.9</td>
<td>6.8</td>
<td>7.8</td>
<td>4</td>
<td>14</td>
<td>27</td>
</tr>
<tr>
<td>S12</td>
<td>5.0</td>
<td>19</td>
<td>208</td>
<td>6.4</td>
<td>7.6</td>
<td>8.0</td>
<td>4</td>
<td>13</td>
<td>28</td>
</tr>
<tr>
<td>NR13</td>
<td>5.7</td>
<td>16</td>
<td>251</td>
<td>6.2</td>
<td>7.3</td>
<td>7.8</td>
<td>5</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>W13</td>
<td>3.3</td>
<td>12</td>
<td>176</td>
<td>6.1</td>
<td>7.2</td>
<td>8.0</td>
<td>4</td>
<td>7</td>
<td>36</td>
</tr>
<tr>
<td>J13</td>
<td>5.8</td>
<td>27</td>
<td>171</td>
<td>5.3</td>
<td>5.8</td>
<td>6.5</td>
<td>6</td>
<td>19</td>
<td>38</td>
</tr>
</tbody>
</table>
Statistical significance of treatment main effects for V5 corn plants by location.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Location</th>
<th>Broadcast P</th>
<th>Starter P</th>
<th>Bdct*Starter</th>
</tr>
</thead>
<tbody>
<tr>
<td>V5 Plant Mass</td>
<td>Gaylord</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Stewart</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>New Richland</td>
<td>NS</td>
<td><0.001</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Willmar</td>
<td>0.045</td>
<td>0.015</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Janesville</td>
<td>0.004</td>
<td><0.001</td>
<td>0.079</td>
</tr>
<tr>
<td>V5 P Uptake</td>
<td>Gaylord</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Stewart</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>New Richland</td>
<td>0.007</td>
<td><0.001</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Willmar</td>
<td>0.011</td>
<td>0.043</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Janesville</td>
<td>0.001</td>
<td><0.001</td>
<td>NS</td>
</tr>
</tbody>
</table>
Summary: V5 whole plants

- Plant populations were NOT affected by treatments (data not shown).
- Early growth of corn (V5 plant mass) and P uptake were not affected by treatments in 2012, a very warm spring.
- Broadcast P increased V5 mass in 2 of 3 sites and P uptake in 3 of 3 sites in 2013, a very cool and wet spring.
- Starter (APP) increased V5 mass and P uptake in 3 of 3 sites in 2013.
Significance of treatment main effects for grain yield and moisture by location.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Location</th>
<th>Broadcast P</th>
<th>Starter P</th>
<th>Bdct*Starter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain Yield</td>
<td>Gaylord</td>
<td>0.090</td>
<td>NS</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>Stewart</td>
<td>0.050</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>New Richland</td>
<td>0.004</td>
<td>0.029</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Willmar</td>
<td><0.001</td>
<td>NS^</td>
<td>NS^</td>
</tr>
<tr>
<td></td>
<td>Janesville</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Grain Moisture</td>
<td>Gaylord</td>
<td>NS</td>
<td>0.051</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Stewart</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>New Richland</td>
<td>NS</td>
<td>0.007</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Willmar</td>
<td>0.053</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Janesville</td>
<td>0.031</td>
<td>0.003</td>
<td>0.049</td>
</tr>
</tbody>
</table>
Corn yield as affected by broadcast P

<table>
<thead>
<tr>
<th>Location</th>
<th>Yield (bu/ac)</th>
<th>None</th>
<th>120-lb P<sub>2</sub>O<sub>5</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaylord</td>
<td>NS</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Stewart</td>
<td>7 bu</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>New Rich.</td>
<td>9 bu</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Willmar</td>
<td>25 bu</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Janesville</td>
<td>NS</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
Grain yield at Gaylord in 2012

Funding provided by the Fluid Fertilizer Foundation
Summary: corn grain yield

• Broadcast P increased grain yields at 3 of 5 sites ($a=0.05$).
 – Yields were 7, 9, and 25 bu/ac greater at Stewart, New Richland and Willmar, respectively.

• Starter (APP) increased grain yields at 1 of 5 sites.
 – 5-10 bu/ac at New Richland

• APP increased grain yields (7-10 bu/ac) at Gaylord when no broadcast P was applied.
Relative yield as affected by treatment main effects including soil test P levels, when analyzed across locations (Willmar excluded).

<table>
<thead>
<tr>
<th>Treatment Effects</th>
<th>P Soil Test Used to Delineate Zones</th>
<th>Olsen P</th>
<th>Bray P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Test P Level</td>
<td>-----------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Low</td>
<td>98.0 a</td>
<td>97.9 a</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>98.8 a</td>
<td>97.9 a</td>
<td></td>
</tr>
<tr>
<td>High/Very High</td>
<td>99.4 a</td>
<td>99.5 a</td>
<td></td>
</tr>
<tr>
<td>Broadcast Rate</td>
<td>0 lb P<sub>2</sub>O<sub>5</sub>/ac</td>
<td>97.5 b</td>
<td>97.1 b</td>
</tr>
<tr>
<td></td>
<td>120 lb</td>
<td>99.9 a</td>
<td>99.8 a</td>
</tr>
<tr>
<td>Starter (10-34-0) Rate</td>
<td>0 gal/ac</td>
<td>97.4 b</td>
<td>97.1 b</td>
</tr>
<tr>
<td></td>
<td>2.5 gal</td>
<td>98.6 ab</td>
<td>98.4 ab</td>
</tr>
<tr>
<td></td>
<td>5.0 gal</td>
<td>99.7 a</td>
<td>99.3 a</td>
</tr>
<tr>
<td></td>
<td>7.5 gal</td>
<td>99.3 a</td>
<td>99.0 a</td>
</tr>
<tr>
<td>Interactions, (P > F)</td>
<td>Broadcast Rate*Starter Rate</td>
<td>0.013</td>
<td>0.110</td>
</tr>
</tbody>
</table>
Relative yield as affected by broadcast and starter P across locations.

<table>
<thead>
<tr>
<th>Broadcast P2O5 Rate</th>
<th>0 lb</th>
<th>120 lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative corn yield, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 gal/ac APP</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>2.5 gal</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>5.0 gal</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>7.5 gal</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Summary: relative yield

- Broadcast P increased relative yields about 2.5 percentage points (Willmar site excluded).
- 5 and 7.5 gal/ac of APP increased grain yields about 2 percentage points compared with 0 gal/ac of APP
 - 2.5 gal/ac was intermediate
- A significant broadcast P rate*starter rate interaction showed:
 - APP increased grain yields when no broadcast P was applied.
Acknowledgements

• The authors are most grateful to:
 – the Fluid Fertilizer Foundation, Minnesota Corn Growers, Corn Research and Promotion Council for funding this project
 – *FFF partnering labs for “in-kind” support*
 – research crews at the Department of Soil, Water, and Climate and Southern Research and Outreach Center for their assistance
 – farmer cooperators for their assistance and the use of land
QUESTIONS

Jeffrey Vetsch
Univ. of Minnesota
Southern Research and Outreach Center

jvetsch@umn.edu

http://sroc.cfans.umn.edu/People/Staff/JeffreyVetsch/index.htm